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The Kantorovich method is used to obtain an approximate solution
of the problem of heating (cooling) of a plate, whose thermophysi-
cal parameters depend on temperature, in the presence of radiative
heat exchange with the ambient medium. The solution is compared
with certain known exact solutions.

We shall consider the symmetrical heating (or
cooling) of a plate whose thermal coefficients depend
on temperature in the case of nonlinear boundary
conditions. There are no internal heat sources. To
simplify the calculations, we introduce the new tem-
perature function
T
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Obviously, if A = const, then ¢ is simply the temper-
ature T.

With the new variable the differential equation of
heat conduction and the boundary conditions take the
form

o2 pc 0
L (M)=— (b)) — — — (A9) =0,
(*9) dxg(} xdr(ﬁ)
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ip 0 <7 x <R, T= 1y, (4)

Fdllowing Kantorovich [1] we represent the approx-
imate solution of this problem in the form of a sum
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where fi are unknown functions, and @; given (coor=
dinate) functions selected a priori. We also require
that at each given instant A# be in a certain sense
close to the exact solution Ad in the closed region

0 =x =R. In other words, with respect to the space
coordinates, we apply the usual procedure of direct
methods, and with respect to the time coordinate the
Kantorovich method.

In the paper cited the Kantorovich method was used
in combination with the method of moments, which
consists in satisfying, together with the boundary con-
dition, the conditions of orthogonality of the residues
obtained as a result of substituting %9 for A¢ in (2)
with the first [ functions of some system {&,]:

L de=0 k=12 ..., L (6)
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If, in particular, we take as the functions {y the
coordinate functions ¢;, the method of moments goes
over into the Galerkin method.

The applicability of the Galerkin method for solv-
ing linear problems was established in [2], and the
convergence of the method of moments in solving
nonlinear problems was proved in [3].

After performing the integration in (6) we obtain a
system of differential equations (generally nonlinear)
for determining the unknown functions of time fj. The
solution of a high~order system is difficult and there-
fore in (5) we retain only the first two terms. In order
not to lose accuracy, we introduce additional physi-
cal considerations and select the coordinate functions
in accordance with the special characteristics of the
problem.x We will consider two stages of the process
and assume that in the first stage the heating zones
spread from both surfaces of the plate into its inte-
rior, the inner layer (still unaffected by heating) re-
taining the initial temperature (Fig. 1). When the two
fronts come together in the middle plane, the second
stage begins and the heating zone embraces the entire
body.

On the basis of the theory of the quasi-stationary
regime [4] we assume that at any given moment the
divergence of the heat flux density is constant within
the heated zone and, consequently, a flux of density
p passing through the surface is uniformly distributed
in that zone. This assumption may be regarded as a
macroscopic analogy of the condition of local equili-
brium of the microscopic parts of a system:

i(nﬁz):-i;(%):-”-. g

In the next instant, of course, the value of the di-
vergence changes since the energy flux through the
surface will already be different (and in the first
stage of the process, moreover, the width g of the
heating zone will increase).

*Thus, it is possible to obtain a solution perfectly
suitable for engineering calculations. This is illus~
trated later by comparing certain of the equations
derived with known exact expressions. Good agree-
ment was also obtained when the approximate solu-
tions were compared with the results of analog
simulation and computer calculations.
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Fig.1.Variation of relative surface temperature ug and
temperature drop ug — U Over cross section for a piate
heated by radiative heat transfer from an external me-
dium (initial temperature of plate zero): I and II) first
and second stages; 1) at Keq = (0.50, 2) 0.10; 3)0.05; 4) 0.
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Fig. 2. Variation of relative
008 surface temperature vy and
' temperature drop ve — vg over
cross section during cooling
012 of a plate by thermal radiation
(temperature of external me-
‘ dium equal to zero): 1) at Ky =
v, - = 0,10, 2) 0.05; 3) 0.01; 4) 0,
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After integrating (7) with boundary conditions (3)
we obtain for the first stage (q < R) .

R~xﬁ\‘) R—g<x<R

¢ 1
|yt g ~(1—

(x):i 2\ q

{

1. (M), 0 < ¥ - R —q. (8)

In the second stage q = R and solution (8) takes the
form

~ ~ I x\2
(W)——(W)c-“rpq-?(E),0<X<R. (9)

Here, in accordance with the form of expression (5)
the first factors are the functions §;» and the second
the coordinate functions ¢;.

We now apply the method of moments with respect
to the x coordinate, setting

=i

5}
— ¢ 10
o (10)
in (6). 1t follows from (8) and (9) that £;= 0, and in
the first stage (g < R)

[ o oy
l(1~R )L)RZL,R'—C]<X<R
T, =1 q q ,  (10a)
! 0 0<x<R—q
while in the second stage (q = R)
. {x\? 2
ugz——é‘(}—z') :~72—(pz, 0< x <R. (10b)

Thus, in the second stage the function ¢, coincides
with the coordinate function ¢, (correct to a constant
factor), and, consequently, the method of moments
goes over into the Galerkin method.

From (2), (8), and (9) we obtain the approximate
value of the operator L(A+¢) in the first stage (for the
heated zone)

Loy =P _0c [ R=x\1, %
(9) q 27»”_ ( q ) par+

-2

—%I,qu<x<R (11
d |

and in the second stage

0< v < R. (11a)

Substituting these expressions in (6) and perform-
ing the integration, we should obtain a system of or-
dinary differential equations for determining the
unknown time functions. However, since ;= 0, the
system reduces to only one equation. At the same
time, (11) and (11a) each contain two unknown func-
tions (p and q or p and A& ). It is easy to see, how—
ever, that they are not independent, since they are
related by boundary condition (3)}. Therefore, in solv-
ing the differential equation they can be expressed one
in terms of the other or, when this is convenient (as,
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for example, in the case considered below), in terms
of a third related time function.

The specific form of the solution depends strongly
on the variation of A, pc, and p during heating (or cool-
ing). In order to express the effect of each nonlin-
earity more clearly, we divide the general problem
into two particular ones:

1. Linear differential equation of heat conduction,
nonlinear boundary conditions.

2. Nonlinear differential equation, linear boundary
conditions.

Heating (cooling) of plate with constant thermal
coefficients. The process takes place in an electro-
magnetic field with a strongly expressed skin effect.
There is radiative heat exchange with the surrounding
medium. The initial temperature is constant. Since
A = const, it follows from (1) that 4 = T.

We will start by considering the first stage of heat-
ing. We substitute (10a) and (11) in (6). After integra-

"tion with respect to the X coordinate over the entire

cross section of the plate we obtain

1 p 1/ 7 dq | ap
—_———— = p — +——¢g ==} =0. 12
6 ¢ 2a(60p0t+2040: (12)
We now express p and q in terms of the surface
temperature 4g. From boundary condition (3) we have
0%

A ? =p=y0 (ﬁéq— 9, Peq= Ycﬁéq:t Pert vo0!,  (13)

where the equivalent flux density Peq (or the equivalent
temperature of the medium d¢g) takes into account
both transfer of the energy of the electromagnetic
field with flux density p em 20d radiative heat exchange
between the surface of the plate at temperature ¢4

and the outer wall (at temperature ¢,,). Then, set-
ting x = R, from (8) and (13) we find

(14

We now introduce the relative temperature, re-
presenting it in fractions of the equivalent tempera-
ture of the medium ¢, or the initial temperature of
the body #in (one of these quantities is not equal to
zero), together with the criterion as the Biot number
for linear boundary conditions:

v b : s ﬁeq\ !
~—v=, 0 (x—
Veq n feq™ (1900} R
‘ W, v —1
- - int
Kin = (Yob) ( Ml (15)
Then (14) takes the form
g 2 ug wzlm (14a)

R 1\'eq 1—u§

After substituting (13) and (14) in (12) and integrating
with respect to time with initial condition (4, we ob-
tain
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Fig. 3. Variation of temperature T, °K of surface (a) and
middle plate (b) of a plate heated by a constant heat flux
with allowance for the dependence of the thermophysical
parameters (1) A, W/m - deg, 2) 5 - 10% pc, J/n’ - deg;
3) 0.14, deg: 4) 108 a, mz/sec) on temperature (I), ata =
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+ arctgz )]

9 1 142
———u, [ —In
40 1“( 2 l 1—z
= KFo, Fo= 2 %, (16)
pc R?

Having determined from (16) the relative surface
temperature for a given instant of time, we then cal-
culate from (13) and (14) the resultant flux density p
and the depth of the heated zone g and, finally, from
(8) find the temperature distribution over the plate
cross section.

The first stage ends at Fo = Fo;, when the two
beating fronts meet. The corresponding relative sur~
face temperature ug ; is determined from (13a) by set-
ting g = R. The temperature distribution attained at
that moment is the initial distribution for the second
stage. The solution for the second stage is similarly
obtained, but using (10b) and (11a):

2=Ug

-Ll 14z
4 11—z

2=tls "

4—»—— arctgz———ln[l——z‘*l
2 10

= Keq(Fo — Fo,). (17

Having determined the surface temperature at any
instant from (17), we can then find from (9) and (13)
the relative temperature in the middle plane and at
any other intermediate point

Ue = Ug — ﬁ;—q(l — u) (18)

Several special cases are of interest.

1. The initial temperature is equal to zero. In this
case all the formulas are simplified, since they con-
tain only one parameter K. (Fig. 1).

2. Heating of a thin plate. In this case Kgg, and
therefore it is possible to disregard the first stage

(Fo; =~ 0), assuming on the basis of (14a) and (18) that
at the very beginningug ®u, = u. From (17) we have
T

—= —(—— arct z—-1n 1—2 —l =——pL,

[ 1 . ¢ | |_ 0 ¢R deq

Z——M

which differs from the known exact formula only with
respect to the very small third term on the left (the
relative error at u = 0.5 is less 0.6%, and at u= 0.9
about 2%) .

3. Heating ceases at a low relative temperature
when it is possible to neglect the radiation of the plate
itself as compared with Peq- This is the linear prob-
lem. Setting u, = ¢o/deq << 1 and going over to ab-
solute temperatures, from (8), (14, and (15) we
obtain the solution for the first stage:

o/ RV ]
l/—Fo

At the surface the temperature

~ . PeR N
&, =9, +1.19 _;_—]/ Fo.

INZHENERNO-FIZICHESKII ZHURNAL

However, the exact solution for small Fo has the
form [4]

_ R
8 = Y+ 2ierfcO. &5131/?0 = + L3 EESY TR,

i.e., the relative error is about 5.5%.

The first stage ends at Fo; = 7/40. The approxi-
mate solution for the second stage, obtained from (9)
and (18), has the form

and the exact solution for the quasi-stationary regime

is
»_ peqR 1(/\5 2 7
=8+ ) Fo L —f =} —~—1|.
i A [ "2\ R 42

4. The equivalent temperature of the external me-
dium is equal to zero. The plate is cooled from the
initial temperature #;,. We transform solution (8) and
(9), expressing pg in terms of the surface tempera-
ture (for this it is first necessary to set x = R in the
equations) and introducing the relative temperature
v and the criterion Kj, given by (15). We then pass to

the limit &40 in the general equations (16) and (17).
Finally, for the first stage we obfain
o=l _ 1—R“")2i:_?_1—”s
vs—1 ( q "R Kin
1 .J2 5 3,7
TR e L R
and for the second stage
_ 2
v UC___(jC_) Uc—Us+K1n
vy — U R
1‘ 3
— 5t - »——K ln . (Fo—Foay).
3 © : vm 1 o ]

At K;, <1 the relative temperature drop over the
cross section does not exceed 0.5 Kj (Fig. 2) and the
plate may be regarded as "thin." In this case the du-
ration of the first stage is negligibly small, and the
expression for the second stage differs from the exact
solution only with respect to a very small logarithmic
term (at Kj, = 5-10~% and vg = 0.9 the relative error
does not exceed 3.3%, and at vg = 0.1 it is less than
0.03%.

Heating (cooling) of a plate whose thermal coeffi-
cients depend on temperature. The skin effect is
strongly expressed, p = const. The initial temperature
distribution is uniform.

We assume some specific law of temperature de-
pendence of A and pc. Let, for example,

7\.:},0/}/-1 +aT, . (19)
pc=(c), (B+vVT+al) (19a)
Substituting (19) in (1), we obtain
2 T L aT. A a [ A 2
o 1/ + o ) }Lo + i (}v ) (20)

(i
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Thus, from (19a) and (20) we have

i =xo/(1+§‘;‘—m),
(]

a

o AD ) . (21

/

.oc=<pc>o(ﬁ+1+

In the first stage the distribution of temperature
(more exactly, the quantity A¢) over the plate cross
section is described by equation (8). As in the previ~
ous example, to find the dependence on time we use
the Kantorovich method in conjunction with the method
of moments. We substitute (10a) and (11) in (6). In
this caseit isnecessary totakeinto accountthat 8p/071 =
=0, but A and pc are known functions of A¢#, which,
in turn, depends on the x coordinate in accordance
with (8).

After integrating (6) with respect to x, we obtain

{73 +Mhh g 9 B+2hAmpRa (‘7_>2 +
120 14+ 2gR 280 1+4B A \R

n 11 1 ,OR(Z)Z AR A
2688 1+s( Ao (R ,}ax (R) R’

Solving this differential equation with initial con-
dition g = 0 at 7 =0, we find

lﬁ+7»o/?»in_759’i)2 3 B+ 2h/Ayp PR (_57_\3+
40 1+p xin(R 280 1+B A \R)

1 1 (pRa)2 i'rzﬁoj (22)
10752 1 4B\ A, R, R

From (22) we determine the depth of the heating
zone for any instant of time, then from (8) we cal-
culate the corresponding value of ] and, finally,
from (20) the temperature T.

The end of the first stage 7 = 7; is determined from
(22) with g = R. In the second stage the temperature
distribution is expressed by a parabola (9), and the
function &, and the value of the operator L(A¢) by
expressions (10b) and (11a). Integrating (5) with a
account for the temperature dependence of the ther-
mal parameters, we obtain an ordinary differential
equation for determining (A3) as a function of time.
Solving it with the initial condition (Af)¢ = (Ad);, with
T =T, we find

A (e — (W) |+ B [(:0) — ()] +

+ C ) — (L) — PR ‘3%;&), (23)
where
324LpBpRa 3 1 'pRa)2
A=1+ 2 - ,
+201+5 M +161+ﬁ( "
B:_l_ﬁ_[”h_@_ I (pRu)z}czi;(E_)“‘
4 a1 +B 80 1+B\ 2 /[ 121480 A/

We now calculate the value of (ﬁ?)c at any instant
of time from (23), then that of (#%) from (9), and,
finally, the temperature T from (20).

Equations (22) and (23) may be simplified in two
special cases. If the heat capacity does not depend on
temperature, then § =<. However, if the thermal
conductivity is also a constant, then « = 0, and the
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problem reduces to the special case 3 already con-
sidered (linear differential equation, linear boundary
conditions of the second kind).

As an example in Fig. 3 we have shown the varia-
tion of the temperature of an Armco-iron plate. The
thickness of the plate 2R = 40 * 10~%m, the energy flux
density at the surface p = 108 W/m?. The thermophysi-
cal parameters of Armco-iron vary within wide limits.
At T =300°K, A =70 W/m * deg, and pc = 5.85 - 10°
J/m’. deg.

From these values we find from (19a) the auxiliary
coefficients for the given temperature range: « = 1072
deg™!, g = —0.645, Ay = 140 W/m - deg, and (pc)y =
=0.625° 10° J/m « deg, aqy = 2.24 - 107 m?/sec.

At constant flux density as the temperature in-
creases heating slows down, but the drop over the
cross section increases (as a result of the increase
in heat capacity and decrease in heat conduction).
Linearization of the problem leads to a serious dis-
crepancy with the solution obtained. If, for example,
constant values corresponding to the initial tempera-
ture are assigned to the thermophysical parameters,
the heating rate proves to be too high over the entire
interval (Fig. 3). However, if these values are made
to correspond to the temperature at the end of heating,
the rate will be correspondingly too low.

The Kantorovich method was originally developed
for solving elliptic differential equations and, in par-
ticular, boundary value problems of the theory of
elasticity. Since only part of the solution is selected
a priori, it gave more accurate results than the usual
direct methods. However, as shown in this article,
the Kantorovich method is especially effective in solv-
ing hyperbolic equations, including nonlinear non-
stationary problems of the theory of heat conduction.
In fact in a limited region (with respect to the space
coordinate) the solution of a boundary value problem
can be obtained with the necessary accuracy by using
direct methods and making a suitable choice of the
form [5] and number of the coordinate functions, even
though this requitres a large volume of computation.
However, in solving nonstationary problems this pos-
sibility is not open to us, because the region of varia-
tion of the time coordinate is unbounded. By using the
Kantorovich method it is possible to find the exact law
of temperature with time, admittedly not for the ori-
ginal problem, but for a somewhat modified one, in
which the temperature distribution with respect to the
space coordinates is known only approximately.

The basic idea of the Kantorovich method—reduc-
tion of the problem to the solution of an ordinary
differential equation—has, in fact, already been
applied in a number of studies in combination with
various direct methods: a variational method [6, 7],
the integral heat balance method [8—10], the Galerkin
method, and the method of averaging functional cor-
rections [11]. Occupying an intermediate position be-
tween the exact and approximate methods, it possesses
great generality and can be successfully employed in
solving various two- and three-dimensional nonsta-
tionary and nonlinear problems of the theory of heat
conduction.
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NOTATION

T is the temperature; ¢ is the temperature func-
tion; u and v are its relative values; 7is the time;
X is the coordinate; p is the energy flux density; q is
the depth of heated zone; 2R is the plate thickness;
A is the thermal conductivity; p is the density; c is
the specific heat; v is the coefficient of mutual irra-
diance; o is the Stefan-Boltzmann constant; Fo is the
Fourier number; K is the criterion analogous to the
Biot number of linear problems. Subscripts: in is the
initialy s is surface; ¢ is central; m is medium; eq is
equivalent; em is electromagnetic.
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